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Abstract A fast-responsive fluorescent phenylamine-
oligothiophene sensor 2TBDA was reported. This sensor
exhibited highly selective and sensitive detection of
Hg2+ ion in THF/H2O (7/3, v/v) solution through fluo-
rescence quenching. The detection was not affected by
the coexistence of other competitive metal ions. In addi-
tion, the detection limit was found to be as low as
3.841×10−7 M.
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Introduction

Among the metal cations, mercury has received consider-
able attention because of its high toxicity. Particularly,
mercury is a bioaccumulative and extremely toxic heavy
metal that could affect the immune and nervous systems,
alter genetic expression, cause serious damage to human

health, and also lead to die even at low concentrations
[1–5]. In order to protect public health, the US Environ-
mental Protection Agency (EPA) has set the detection
limit down to 10 nM Hg2+ in drinking water [6]. There-
fore, the selective, sensitive and rapid detection of Hg2+ in
the environment and food industry is in high demand.

The development of highly selective and sensitive fluo-
rescent sensors for metal cations has received increasing
attention due to their potential use in medicine, environ-
ment and biology in recent years [7, 8]. Importantly, such
sensors for metal cation detection and measurement offer
significant advantages such as high sensitivity, good se-
lectivity, versatility, rapid response time, local observation
and relatively simple handling [9, 10]. Therefore, fluores-
cent chemical sensors are elegant alternative to the tradi-
tional analytical instruments. Currently, a great number of
efforts have been made to develop more fluorescent sen-
sors for the detection of mercury and mercuric salts with
sensitivity and selectivity [4, 11–18].

To date, many fluorescent chemosensors for detection
of Hg2+ have been developed based on calixarenes [19,
20], quinolines [21–23], fluorescein [24–26], rhodamine
[27–31], pyrene [32, 33], naphthalimide [34–36] and oth-
er structural moieties [11, 37–41], however, some of them
still suffer from practical use. Thus, development of more
practical, selective and sensitive fluorescent chemosensors
is still a challenge.

In our previous studies, we reported the synthesis,
photophysical and thin-film properties of a phenylamine-
oligothiophene-based derivative 2TBDA [42] (Fig. 1). In or-
der to expand our interest to the fluorescent chemosensor for
metal-ion screening studies, we continue to explore its cation-
sensing properties. However, the investigated results demon-
strated that 2TBDA exhibited high selectivity, sensitivity and
rapid fluorescence response to Hg2+ ion over other metal
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cations like Na+, K+, Ag+, Ca2+, Al3+, Co2+, Cu2+, Ni2+, Zn2+,
Pb2+, Cd2+, Fe2+ and Cr3+ in aqueous media.

Experimental

Reagents

Unless otherwise stated, solvents and reagents were of analyt-
ical grade from commercial suppliers, and were used without

further purification. Metal salts were purchased from Sigma–
Aldrich and used as received. THF was spectrometric grade
and purchased from Qingdao Yage Chemical Reagent Com-
pany. Water was deionized with a Milli-QSP reagent water
system (Millipore) to a specific resistivity of 18.4 MΩcm.
THF and deionized water were used in all of the experiments.
All other reagents are analytical grade and purchased from
Beijing Chemical works. The salts used in stock solutions of
metal cations were NaNO3, Ca(NO3)2 ·4H2O, Al(NO3)3 ·
9H2O, Pb(NO3)2, Cu(NO3)2 ·3H2O, AgNO3, Zn(NO3)2 ·
6H2O, Cd(NO3)2·4H2O, Fe(NO3)3·9H2O, Co(NO3)2·6H2O,
Ni(NO3)2·6H2O, KNO3, Hg(NO3)2·H2O, FeCl2·4H2O and
CrCl3·6H2O. 2TBDA was prepared as reported previously
[42].

Apparatus

All UV-vis absorption spectra were recorded with a Shimadzu
UV-2600 spectrophotometer at room temperature. All fluores-
cence measurements were carried out on a Hitachi F-4600
fluorescence spectrophotometer with a scan rate at 1200 nm/
min. The excitation wavelength was set at 320 nm. The slits
for excitation and emission were set at 5 nm/5 nm,
respectively.

General Procedures for Spectral Determination

All tests described in this paper were carried out at room
temperature. All the metal salts of Na+, K+, Ag+, Ca2+, Fe3+,
Al3+, Co2+, Ni2+, Cu2+, Zn2+, Pb2+, Cd2+, Hg2+, Fe2+ and Cr3+

were dissolved in water to prepare the stock solution with the
concentration of 1.0×10−3 M. 2TBDAwas dissolved in THF
to give the stock solution (1.0×10−3 M) and diluted with a
mixed solution of THF/H2O to prepare the analytical solution
(1.0×10−5 M) (THF/H2O, 7/3, v/v). The stock solution of the
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Fig. 3 UV–vis absorption spectra of 2TBDA (10 μM) in the presence of
2.0 equiv. of different metal ions
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Fig. 2 a. Fluorescence spectra of 2TBDA (1.0×10−5 M) in aqueous
solution (THF/H2O, 7/3, v/v) in the presence of various cations (2.0
equiv.). Inset: photos of 2TBDA without and with addition of Hg2+

under the irradiation of UV light at 365 nm; b Fluorescence quenching
degree of 2TBDA (10 μM) in the presence of Hg2+ (20 μM) and other
metal cations (each 20 μM). F0 and F represented the fluorescence inten-
sities of the 2TBDA-based sensor system at 498 nm in the absence and
presence of Mn+, respectively

Fig. 1 The structure of sensor 2TBDA
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metal cations and 2TBDA was used directly in the spectro-
scopic measurement. For the sensitivity measurement, differ-
ent concentrations of Hg2+ ions were added to the assay solu-
tion, and the fluorescence spectra were recorded. The selec-
tivity was checked by addition of Na+, K+, Ag+, Ca2+, Fe3+,
Al3+, Co2+, Ni2+, Cd2+, Zn2+, Pb2+, Cu2+, Fe2+ and Cr3+ in to
the stock solution.

Results and discussion

To explore the sensing ability of 2TBDA, 15 metal cations
including Na+, K+, Ca2+, Co2+, Ni2+, Cu2+, Zn2+, Fe3+, Pb2+,
Ag+, Cd2+, Hg2+, Al3+, Cr3+ and Fe2+ was investigated in
THF/H2O (7/3, v/v) by fluorescence and UV-vis measure-
ments. The results indicated that the fluorescence intensity
of 2TBDA strongly quenched in the presence of the Hg2+

ion (2.0 equiv.) in THF/H2O (7:3, v/v) (Fig. 2a), accompanied
by a green-yellow color fluorescence turn-off response
(Fig. 2a, inset), while Fe3+ induced a relative higher fluores-
cence quenching. Other metal cations did not affect the fluo-
rescence intensity of 2TBDA significantly. The observed
quenching efficiency ((1-F/F0)×100 %) at 498 nm was nearly
92 % by Hg2+, where the other metal cations caused small
quenching in fluorescence (except Fe3+: 46 %) (Fig. 2b). As
shown in Fig. 3, the free 2TBDA has strong absorption in the
range 350–450 nm, and the absorption maxima located at
398 nm in aqueous solution (THF/H2O, 7/3, v/v). The strong
absorption intensity of peak at 398 nm highly quenched upon
the addition of Hg2+ ion (2.0 equiv.) to the solution, whereas
other metal ions (2.0 equiv.) make insignificant spectral
change in this region (except Fe3+). These obvious
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solution
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Fig. 5 Job’s plot for determining the stoichiometry for 2TBDA andHg2+

in THF/H2O (7/3, v/v) solution. The total concentration was 10 μM
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Fig. 4 Fluorescence emission spectra of 2TBDA (1.0×10−5 M) was
titrated with Hg2+ (0–2.0 equiv.) in aqueous solution (THF/H2O, 7/3,
v/v). Inset: plot of the fluorescence intensity at 498 nm as a function of
Hg2+ concentration
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observations indicate that 2TBDA displays clear ‘turn-off’
fluorescence response and considerably high selectivity to-
wards Hg2+ ion in aqueous solution.

The fluorescence titrations of 2TBDA (10.0 μM) was per-
formed in the presence of various concentrations of Hg2+ ions
in THF/H2O (7:3, v/v) in Fig. 4. Upon addition of Hg2+ leads
to a continuous fluorescence quenching around 498 nm, and
the fluorescence intensity remains constant until upon addi-
tion of Hg2+ (1.0 equiv.). A good linear relationship between
the fluorescence intensity at 498 nm and the Hg2+ concentra-
tion was found in the range of 0–10 μM (Fig. 4, inset). These
observations above indicate that 2TBDA and Hg2+ have a 1:1
binding ratio. Furthermore, a 1:1 stoichiometry between
2TBDA and Hg2+ was obtained from Job’s plot (Fig. 5).
The binding model was in good agreement with that of
3TDDA and Hg2+ [43]. In addition, the fluorometric titration
data was also used to obtain the detection limit (DL) of
2TBDA for Hg2+ shown in Fig. 6. The detection limit was
thus found to be 3.841×10−7 M for Hg2+ ion. The DL was

sufficiently low to detect submillimolar concentration of the
Hg2+ ion, which belongs the range found in many chemical
and biological systems.

To further explore the possibility of using 2TBDA as a prac-
tical ion-selective fluorescent chemosensor for Hg2+, competi-
tion experiments were carried out. As can be seen from Fig. 7,
2TBDA exhibited a significant selectivity towards Hg2+ ion.
The deviation of the fluorescence quenching in the presence of
other metal cations was less than 6 %. This indicated that Hg2+

ion detection by 2TBDA was unaffected by the presence of
other competitive metal cations. According to the results, it
could be assumed that 2TBDA had potential prospects as a
selective detector of Hg2+ ion in aqueous environment. More-
over, the EDTA experiments were conducted to examine the
reversibility of 2TBDA towards Hg2+ ion in aqueous solution
(THF/H2O, 7/3, v/v) as shown in Fig. 8, the solution changed
from colorless to green-yellow when EDTA (5.0 equiv.) was
added to the solution of 2TBDA/Hg2+, and the fluorescence
was turned on in several seconds. These results indicate that
the coordination process is reversible and thus 2TBDA is a
reversible chemosensor for Hg2+ in aqueous solutions.

Reaction time is an important factor for sensors, thus the
effect of the reaction time on the binding process of Hg2+ ion
to 2TBDAwas investigated (Fig. 9). Following the addition of
Hg2+ ion (20 μM) to 2TBDA (10 μM), the fluorescence in-
tensity of 2TBDA was quenched rapidly, reaching a stable
value within 3 min and then remaining constant from 3 to
10 min. The rapid, stable complexation of Hg2+ ion by
2TBDA and the resulting quick response profile are important
features for robust, real time detection of Hg2+ ion by portable
device in field. In contrast, many previously reported fluores-
cent sensors showed responses to Hg2+ ion in the time range of
tens of minutes, generally attributed to slower sensor reaction
processes [44, 45].

Conclusions

In summary, a phenylamine-oligothiophene-based fluorescent
sensor 2TBDAwas reported and its sensing ability for a wide
range of metal cations was investigated. 2TBDA displayed
highly selective, sensitive and rapid response to Hg2+ ion
through fluorescence quenching in aqueous solution (THF/
H2O, 7/3, v/v). The detection limit was found to be as low as
3.841×10−7 M. The coordination process of sensor 3TDDA
and Hg2+ was chemically reversible with EDTA. In addition,
this sensor could detect Hg2+ ion on-line and in real time,
permitting its incorporation into a portable mercury detection
kit in aqueous environment.
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